• Welcome to Religious Forums, a friendly forum to discuss all religions in a friendly surrounding.

    Your voice is missing! You will need to register to get access to the following site features:
    • Reply to discussions and create your own threads.
    • Our modern chat room. No add-ons or extensions required, just login and start chatting!
    • Access to private conversations with other members.

    We hope to see you as a part of our community soon!

What are your thoughts on the origin's of viruses

We Never Know

No Slack
What do you think? First, second or third.

I sometimes wonder if it could be part of all three or none of the three because it might be something completely different than what we think or even maybe they could be a form of alien life that arrived here on astriods or comets. We may never know.

"The origin of viruses is a hotly debated topic. It’s unclear how they first evolved. However, there are many ideas floating around out there. There are three classical hypotheses but many new ideas and discoveries challenging them.

The first one is the virus first hypothesis, and states that since viruses are so much simpler than a cell, they must have evolved first, and that ancestors of modern viruses could have provided raw material for the development of cellular life. The key data that supports this is apparent when you look at virus genes, compare them and their genetic sequence with cellular life data available in genetic databases. This will reveal a mismatch that suggests viruses aren’t a simpler version of cellular life, but are different fundamentally and might have predated cellular life altogether. This model also suggests there was an ancient virosphere from which all viruses evolved. However, some scientists dismiss this hypothesis because of one key feature. According to the classical definition of viruses, they need a host’s cell to replicate. So, how could viruses have survived before the existence of cellular life?

The second model is called the regressive hypothesis, sometimes also called the degeneracy hypothesis or reduction hypothesis. This one suggests that viruses were once small cells that parasitized larger cells, and that over time the genes not required by their parasitism were lost. The discovery of giant viruses that had similar genetic material to parasitic bacteria supported this idea. But what it can’t explain is why the tiniest of cellular parasites don’t resemble viruses at all.

The third model is escape hypothesis, or vagrancy hypothesis, and states that viruses evolved from bits of RNA or DNA that escaped from genes of larger organisms. For example, bacteriophages (viruses that infect bacteria) came from bits of bacterial genetic materials, or eukaryotic viruses are from bits of genetic material from eukaryotes like us. However, in this model, it would be expected that viral proteins would then share more qualities with their hosts, but this is largely not the case. This model also doesn’t explain the unique structure viruses have that is not seen in cells.

Some recent discoveries of giant viruses have even further complicated the question about the origin of viruses. These discoveries also challenge many of the classical definitions of what makes a virus, such as the size requirement, gene behavior, and how they replicate.

Giant viruses were first described in 2003. The first specimen was Acanthamoeba polyphaga mimivirus (APMV), isolated from an amoeba in cooling tower in England. The name “mimivirus” stands for MImicking MIcrobe virus because of the way amoebae mistake it for their typical meal of bacteria. Mimiviruses are different from viruses in that they have way more genes than other viruses, including genes with the ability to replicate and repair DNA.

The pandoravirus, discovered in 2013, is even larger than the mimivirus and has approximately 2500 genes, with 93 percent of their genes not known from any other microbe."


Where Do Viruses Come From?.
 

darkskies

Active Member
Virus first makes sense to me. Maybe they didn't have to replicate, there could be a diverse population of cells with unique characteristics that evolved alongside viruses and when those cells started to replicate, viruses then could start becoming "living" when coming across cells that sustained them.
Otherwise they'd just be like incomplete cells whose designs didn't work out.
 

Valjean

Veteran Member
Premium Member
1. Unlikely. Like computer code or video games antedating computers.
2. Maybe, in some cases.
3. Most likely, I think.
Celluar debris is floating around everywhere, including nucleic acid fragments coding for replication and
protein assembly. They find their way into cells all the time.
Considering the frequency of this gene jumping and exon shuffling, and the billions of years of time, functional,
transposable elements -- 'transposons' -- will inevitably find
their way into cells. Some will code for their own replication, so, once evolved, it's off to the races.
 
Top